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Spherical symmetry - |
The Kohn and Sham (KS) equation is (in atomic units):

5 2 Vo) + Vu(r) + Vio(1)| (1) = ().

For an atom Vigx(r) = —Z/r, where Z is the nuclear charge and
r = |r|. Assuming a spherically symmetric charge density

p(r) = p(r), one can show that the Hartree and exchange and
correlation potentials are spherically symmetric too. In this
hypothesis, the solutions of this equation have the form:

dnim(r) = L 0.

where (r, Q) are the spherical coordinates of r.
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Spherical symmetry - I

Here n, the main quantum number, is a positive integer,

0 < /¢ < n-1 indicates the orbital angular momentum and
—¢ < m < ¢ its projection on a quantization axis. Y;n(2r) are
the spherical harmonics, eigenstates of L% and L;:

L2Yim = L0+ 1)Yom,
L:Yim = mYin.

Inserting this solution in the KS equation, we obtain, for each
value of ¢, an ordinary differential equation for vn,(r):

1d2 00+ 1)

_EW + T + VKs(f) ’(ﬁn[(r) = Enéwné(r)a

where VKS(r) = Vext(r) + VH(r) + ch(r)'
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Spherical symmetry - llI

The charge density is determined by the total number of
electrons and by their distribution among the available orbitals
defined by the occupation numbers f,,. The maximum value of
feis 2,6,10,14for ¢ =0,1,2,3 (s, p, d, f states) respectively.
Note that we assumed a spherically symmetric atom, so we
cannot specify the occupation of a state with a given m. For
open-shell configurations, a uniform distribution of electrons
among the available orbitals is implicitly assumed. The charge
density is:

( ) 4rr? P anZWnZ
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Spherical symmetry - IV

The radial equation is solved by the Numerov’s method,
discretizing the r coordinate by a logarithmic radial grid from
I'min 10 I'max. The grid is:
1 - .

ri:?exm,’ne(/fﬂdx’ i=1,--- 7Np.
From input, it is possible to change the default values of Xpn,
dx and rmax but, usually, this is not needed.
The output of the calculation are the eigenvalues ¢, the radial
orbitals v¢(r), the charge density 5(r), and the total energy.

For instance for Si, with Z = 14 and the electron configuration
15%2522p83523p?, we obtain:
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An example: the Si atom within the LDA

25
2 Si orbitals
15 1s
= 1 2p 3s
£ 05 nt e(Ry)
: 1S 1( 2.00) -130.3691
0 25 1( 2.00) -10.1489
2P 1( 6.00) -7.0288
-05 | 3p 3S 1( 2.00) -0.7966
3P 1( 2.00) -0.3071
-1} 2s
Etot = -576.383950 Ry
15 L . " . . . .
[ 05 1 15 2 25 3 3.5 4

r(a.u)

The orbitals can be divided into core and valence states
according to the energy eigenvalues and the spatial localization
about the nucleus. In Si, the 1s, 2s and 2p are core states
while the 3s and 3p are valence states.

Andrea Dal Corso Pseudopotentials



The logarithmic derivative
Pseudopotential generation

Using the pseudopotential in the solid
Transferability tests

All-electron radial equation
Norm-conserving pseudopotentials
Fully separable pseudopotentials

Norm-conserving pseudopotentials - |

Let us now consider, for each orbital angular momentum /¢, the
equation [1]:

1 d? 000 +1
—5o+ (2;;) + Vis,o(r) | ¢e(r) = eodpe(r).

We would like to find an ¢ dependent pseudopotential Vs ¢(r)
with the following properties:

1) For each ¢, the lowest eigenvalue ¢, coincides with the
valence eigenvalue e, in the all-electron equation. n
identifies the valence state.

2) For each ¢, it is possible to find a r¢ , such that
Ge(r) = tne(r) for r > rey.
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Norm-conserving pseudopotentials - II

The solution of the problem is not unique, and actually there
are several recipes to construct a pseudopotential. First of all, it
is convenient to note that at sufficiently large r, Vys ()
coincides with the all-electron potential because ¢,(r) = yn(r)
for r > ro, and e, = ep. We can therefore choose a Vgi(r) such
that Veg(r) = Vks(r) for r > r,c and rewrite the radial equation
in the form:

1ad2 00+ 1
T (2;;) + Verr (r) + AVps,(r) | de(r) = eope(r).

Then suppose that we have a recipe to get a node-less ¢,(r) for
r < e Then:
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Norm-conserving pseudopotentials - |l

1 1d%2 e+1)
AVps,z(f)—(be(r) ttogE T oz Verr(r) | ¢e(r).

There are some guidelines to follow in the choice of the form of
¢¢(r) and one important condition. First of all the function must
be as smooth as possible, with continuity of a certain number of
derivatives at the matching point r; .. Then it is useful to search
a function whose Fourier transform decays as rapidly as
possible. However, the most important constraint is the
norm-conserving condition [2] that is:

/ drle(r) / ol e(r)
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The logarithmic derivative - |

In order to illustrate the importance of the norm-conserving
condition, it is useful to define the concept of logarithmic
derivative. Let us consider the two equations:

[Tf + VKS(r)] ws(r) = Elﬁe(r),
[TZ + Veff(r) + Avps,é(r)] ¢e(r) = €¢e(r)’

where we defined T; = —%g—; + e(gg)_ By construction, we
know that at € = ¢, the solution ¢.(r) coincides with the (r)
for r > r¢,. But what about the other energies? The
transferability of the pseudopotential depends on the fact that

oc(r) reproduces 1) (r) for a certain range of energies about €.
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The logarithmic derivative - I

In order to quantify the accuracy of the pseudopotential it is
useful to define the logarithmic derivative at a point R close or
slightly larger than r -

d
f(R) = 4 noe(r)],_g

The following relationship links the derivative with respect to ¢
of £.(R) to the norm of the wavefunction up to R:

#2(R) —f / dr ¢2(r)

so the norm-conserving condition guarantees that, at ¢, the
all-electron and pseudo logarithmic derivatives not only
coincide but have also the same derivative with respect to the
energy.
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The logarithmic derivative - Il

The two logarithmic derivatives usually coincide for a quite
extended range of energies, of the order of a few Rydberg
making the pseudopotential concept quite useful in practice.
Here is the example of the s, p and d logarithmic derivatives for
the Si atom (color: all-electron; black: pseudopotential) :

Log. der.

-3 -2 -1 0 1 2
Energy (Ry)
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Pseudopotential generation - |

In order to generate the pseudopotential we have to:
1 Choose the electronic configuration for the atom.
2 Define the core and valence states.
3 Choose the effective potential Vgg(r) and the radius rj.
4 For each ¢ choose the function ¢,(r) and rg .

Points 1) and 2) are reasonably simple and one can find
several suggestions and examples in the literature. Let’'s
discuss points 3 and 4.
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Pseudopotential generation - I

In 1d1.x, the are two ways of choosing Vg (r). Ves(r) can be
taken as the sum of two spherical Bessel function for r < rjy,
SO:
Vis(r) if r> roc
Ver(r) = . . , ,
et (1) { afo(qir) + azjo(qer) if r<rioc
where the parameters aq, a», g1 g» are chosen to have
continuity of Vgg(r) and of its first two radial derivatives, or
Ves(r) can be calculated choosing ¢ and solving the equation:

bu(r)

2
Vor(r) = 1 [ 1d Le+1)

o) |“ T 2a2 T 22
using one of the recipes described below for calculating ¢.(r).
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Pseudopotential generation - IlI

We start illustrating the Kerker method [3] for defining ¢,(r).
Although this method is not implemented in 1d1 . x, it is the
basis of the Troullier and Martins (TM) method. [3] In the Kerker
method the wavefunction for r < r;, is given by the exponential
of a polynomial multiplied by r‘*' which gives the correct
behavior close to the origin:

gbg(f) — rE-H ep(r)’

p(r) =6 +~r2 4+ 38r + ar*,

where the four coefficients «, 3, v and ¢ are chosen to have
¢e(r) continuous with its two derivatives (three constraints) and
to satisfy the norm-conserving condition (fourth constraint).
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Pseudopotential generation - IV

The Kerker recipe is quite simple and gives always node-less
orbitals, but these orbitals are not optimized with respect to the
number of plane waves required in the solid. Therefore the next
two recipes are preferred. TM improves the Kerker method
choosing a higher order polynomial:

p(r) = ¢y + Car? + car* + cr® + cgr® + c1or'® + cior'?.

There are now seven parameters, so that three additional
constraints can be imposed. TM require that ¢,(r) has also the
third and fourth derivatives continuous, and that

Verr(r) + A Vps (r) has zero curvature at the origin, a condition
that they find particularly useful to reduce the required cut-off
energy in the solid.
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Pseudopotential generation - V

The Rappe, Rabe, Kaxiras and Joannopoulos (RRKJ)

method [4] is an alternative to the TM method. In this method
¢e(r) is expanded into spherical Bessel functions of order ¢ for
r S rc7£:

3
Go(r) =Y air jo(qir).
i=

The parameters g; are determined so that the r j,(g;r) have the
same logarithmic derivative as ¢n(r) at r; . Using three
functions, four conditions as in the Kerker method can be
satisfied. The RRKJ orbitals are quite efficient requiring a low
cut-off energy in the solid. However, the orbitals are not
guaranteed to be node-less and sometimes the allowed values
of rg ¢ are too restricted.
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Using the pseudopotential in the solid - |

In order to use the pseudopotential in the solid we have to
subtract from Vg(r) the Hartree and exchange and correlation
potentials.

Vioe(r) = Verr(r) — Vu(r) — Vie(r).

Usually only the valence atomic charge is used to calculate

Vi (r) and Vi (r). This however can introduce a significant
error if there is a large overlap of the core and valence charge.
In this case it is also possible to use the total charge

pe(r) + pv(r) in the calculation of Vi¢(r). The technique is
known as nonlinear core correction. In order to improve the
plane wave convergence a pseudized version of p¢(r) is
generally used for r < reore.
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Using the pseudopotential in the solid - I

Vioc(r) behaves as —Z, /r for large r, while A Vs (r) is
localized and goes to zero for r > max(fioc, rc¢)- In order to
apply the nonlocal part of the potential, that is different for
different ¢, we use projectors into subspaces of well defined ¢:

m=/{
PKZ E: “@mﬂybﬂ-

m=—/¢
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Using the pseudopotential in the solid - I
Therefore the resulting potential is nonlocal (actually it is called

semilocal because it is local in the radial variable and nonlocal
in the angular variables). We can write:

Vos(r,¥) = > Vie(Ir = Ry)s(r —v)
I
+ > Y AV (Ir—RDS(Ir =Ry — [ = Ry)
I Im

X Yim(Q2r-g,) Yim(Q-R,)-

Note that Vj,c(r) is applied to all angular momenta larger than
Lmax, the maximum angular momentum included in the nonlocal
part.
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Transferability tests - |

The energy range in which the logarithmic derivatives coincide
give an estimate of the pseudopotential quality. However, the
logarithmic derivative is calculated at fixed charge density.
Before using the pseudopotential in the solid, we can check its
transferability on the atom by predicting the eigenvalues and
the total energy of atomic configurations different from the
reference one used for the generation. We can also check
spin-polarized atomic configurations. An accuracy of a few mRy
on the eigenvalues of atomic configurations that differ in energy
up to a few Ry from the reference configuration is within the
possibilities of the method. As an example, in Si, we can check
the configuration 3s'3p® and the spin-polarized configuration
3s23p2. We find:
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nl s f.nl e AE (Ry) e PS (Ry) diff
10 35 1( 2.00) -0.79663 -0.79663 0.00000
21 3P 1( 2.00) -0.30705 -0.30705 0.00000
Etot = -576.383950 Ry, -288.191975 Ha, -7842.102455 eV
Etotps = -9.254121 Ry, -4.627060 Ha, -125.908713 eV

10 3 1( 1.00) -0.85139 -0.85190 0.00051
21 3P 1( 3.00) -0.34907 -0.34898 -0.00009
dEtot_ae = 0.496095 Ry

dEtot ps = 0.496377 Ry, Delta E= -0.000282 Ry

10 3 1( 1.00) -0.83109 -0.83154 0.00045
21 3P 1( 2.00) -0.33829 -0.33867 0.00038
10 3 2( 1.00) -0.72857 -0.72723 -0.00134
21 3P 2( 0.00) -0.24627 -0.24521 -0.00106
dEtot_ae = -0.044949 Ry

dEtot_ps = -0.045683 Ry, Delta E= 0.000733 Ry
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Fully separable pseudopotentials - |

The semilocal form of the pseudopotential is not very efficient
for practical calculations. It requires to keep in memory the
matrix (k + G| Vps|k + G’) that becomes rapidly big for large
systems and matrix-vector multiplications to apply it to the
wavefunctions. It is convenient to write the nonlocal part of the
pseudopotential in the fully separable form [5]:

Ve (r,r') ZZEE r|3) Yem Yel,m\r/>-

In this way we can keep in memory only the vectors

(k + G|, Y{ ,,) which are the Fourier transform of (r|5; Y] ) and
to apply the nonlocal pseudopotential by doing a few scalar
products with the vectors which represent the wavefunction.
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Fully separable pseudopotentials - Il

In the atom, we can define §,(r) = AVps(r)de(r) and
Er = [[5° dr ¢u(r)A Vs o(r)e(r)] ' so that the fully separable

potential:
Ve = E4|Be) (B

has the following property:
(rIVnLIpe) = AVpse(r)oe(r).
As a consequence, the equation
[Te + Ver(r)] ®e(r) + (r|Vne|®e) = e®y(r)
has ¢, as an eigenvalue and ¢,(r) as an eigenfunction.
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Fully separable pseudopotentials - Il

Note that this is an integro-differential equation, so although the
node-less function ¢,(r) is an eigenfunction with eigenvalue e,
there is no guarantee that this is the lowest energy eigenvalue.
Actually states with some nodes with energies below the
node-less solution are known as ghost states and must be
carefully avoided in the pseudopotential construction. They can
be detected as peaks present only in the pseudo logarithmic
derivative and can usually be removed by changing Veg(r) or

fc7g.

Andrea Dal Corso Pseudopotentials



All-electron radial equation
Norm-conserving pseudopotentials
Fully separable pseudopotentials

Bibliography

1 W. Pickett, Comp. Phys. Rep. 9, 115 (1989).

2 D.R. Hamann, M. Schliter, and C. Chiang, Phys. Rev. Lett.
43, 1494 (1979).

3 G.P. Kerker, J. Phys. C: Solid St. Phys. 13, L189 (1980).
N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

4 A.M. Rappe, K. Rabe, E. Kaxiras, J.D. Joannopoulos,
Phys. Rev. B 41, 1227 (1990).

5 L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).
Also of interest but not covered here:
6 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
7 P.E. Bléchl, Phys. Rev. B 50, 17953 (1994).
8 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

Andrea Dal Corso Pseudopotentials



	All-electron radial equation
	Norm-conserving pseudopotentials
	The logarithmic derivative
	Pseudopotential generation
	Using the pseudopotential in the solid
	Transferability tests

	Fully separable pseudopotentials

